CURRENT AMPLIFIER Novosense launches current sense amplifiers to address PWM transient interference

Source: Press release NOVOSENSE 2 min Reading Time

Related Vendors

NOVOSENSE announced the launch of its new bidirectional current sense amplifier series, NSCSA240-Q, covering both industrial and automotive versions, designed for high-voltage PWM systems in vehicles and industrial equipments. The series integrates enhanced PWM rejection technology, supporting bidirectional current sensing with exceptional transient immunity, automotive-grade precision, and flexible configurability.

NSCSA240-Q Series Package.(Source:  NOVOSENSE)
NSCSA240-Q Series Package.
(Source: NOVOSENSE)

Featuring an ultra-wide input common-mode range from –4V to 80V, a typical input offset voltage of ±5μV, and a 135dB DC Common-Mode Rejection Ratio (CMRR). This series effectively tackles the challenge of high-frequency transient interference in PWM systems, providing a highly reliable current monitoring solution for automotive electronic power steering (EPS), motor drive, industrial automation and other applications. The NSCSA240-Q series meets the AEC-Q100 automotive reliability standard.

Superior transient immunity: reliable performance in high-voltage PWM environments

In PWM systems, rapid switching can cause severe common-mode voltage fluctuations that distort output signals in conventional amplifiers. The NSCSA240-Q series achieves an AC CMRR of 90dB at 50kHz, effectively suppressing ΔV/Δt transients. Its proprietary transient suppression design reduces output disturbances by up to 80%, achieving a recovery time of less than 10μs under 80V common-mode voltage transients. With a bandwidth ranging from 450kHz to 600kHz (gain-dependent), it supports both high-speed overcurrent protection and accurate low-frequency PWM signal capture—ensuring stable, low-noise signal performance for EPS, motor drive and industrial motor control systems. The wide –4V to 80V input common-mode range offers broad dynamic capability and robust tolerance across 12V, 24V, and 48V vehicle power architectures. Furthermore, ±2000V ESD protection (HBM/CDM) enhances resistance to external electrical disturbances, ensuring overall system reliability.

NSCSA240-Q Series Application Diagram.(Source:  NOVOSENSE)
NSCSA240-Q Series Application Diagram.
(Source: NOVOSENSE)

Automotive-grade precision

Designed to meet the increasingly stringent current measurement requirements of automotive electronics, the NSCSA240-Q series delivers exceptional measurement stability. It features a typical input offset voltage of only ±5μV (maximum ±25μV) and achieves ±0.1% accuracy over a wide temperature range (–40°C to 125°C). With a typical gain error of 0.05%, it ensures reliable and consistent current monitoring even under harsh conditions. Fully qualified to the AEC-Q100 automotive standard, the series guarantees long-term reliability in demanding in-vehicle environments.

Flexible integration: multiple gain and package options for design optimization

As automotive systems trend toward miniaturization and integration, the NSCSA240-Q series is engineered for flexible and space-efficient design. It offers four fixed gain options—20V/V, 50V/V, 100V/V, and 200V/V—supporting shunt resistors ranging from 10mΩ to 0.1mΩ for flexible current detection. The series is available in two compact packages: SOIC-8 (4.9mm × 3.91mm) and TSSOP-8 (3mm × 4.4mm), allowing easy integration into space-constrained motor controller PCBs and helping designers optimize system layouts within limited board area

Follow us on LinkedIn

Have you enjoyed reading this article? Then follow us on LinkedIn and stay up-to-date with daily posts about the latest developments on the industry, products and applications, tools and software as well as research and development.

Follow us here!

(ID:50630897)

Subscribe to the newsletter now

Don't Miss out on Our Best Content

By clicking on „Subscribe to Newsletter“ I agree to the processing and use of my data according to the consent form (please expand for details) and accept the Terms of Use. For more information, please see our Privacy Policy.

Unfold for details of your consent